Plenary Speakers

Edward Y. Chang

President of HTC Research & Healthcare (DeepQ)

Advancing Healthcare with AI, VR, and Blockchain

This talk updates DeepQ’s progress in three areas: automated AI, VR facilitated surgery, and our effort in developing DeepLinQ, a distributed ledger system for supporting privacy-preserved deep learning. My talk starts with my prior work at Google on scalable machine learning to motivate the importance of having big data to train deep learning models. I will then discuss how we deal with lacking labeled data challenges, especially in the medical domain. I use both XPRIZE Tricorder and healthcare chatbot as example applications to explain how we overcome the small data problem with reinforcement learning and  CNNs . I will present  DeepQ  AI machine, which making deep learning training simple and automated. The same AI architecture and AI machine that we have developed are being used also to fuel our AR application: VivePaper. I will explain how our AR efforts facilitating medical education and brain surgery. Finally, I will present DeepLinQ, a multi-layer blockchain architecture facilitating privacy-preserved data sharing to balance data-driven AI and user privacy.

Edward Chang currently serves as the President of Research and Healthcare (DeepQ) at HTC and a visiting professor at UC Berkeley & Stanford. Ed's most notable recent work is co-leading the DeepQ project to win the XPRIZR medical IoT context in 2017 with 1M USD prize. The AI architecture that powers DeepQ is also applied to power Vivepaper, an AR product Ed's team launched in 2016 to support immersive augmented reality experiences. Prior to his HTC post, Ed was a director of Google Research for 6.5 years, leading research and development in several areas including scalable machine learning, indoor localization, and Google Q&A. His 2007-2011 contributions in data-driven machine learning (US patents 8798375 and 9547914) and his ImageNet sponsorship helped fuel the success of AlexNet and recent resurgence of AI. His developed open-source codes in parallel SVMs, parallel LDA, parallel spectral clustering, and parallel frequent itemset mining (adopted by Berkeley Spark) have been collectively downloaded over 30,000 times. Prior to Google, Ed was a full professor of Electrical Engineering at the University of California, Santa Barbara. He joined UCSB in 1999 after receiving his PhD from Stanford University. Ed is an IEEE Fellow for his contributions to scalable machine learning.